Inorganic Nanomaterials for Supercapacitor Design [electronic resource].

By: Inamuddin, 1980-Contributor(s): Boddula, Rajender | Ahmer, Mohammad Faraz | Asiri, Abdullah MMaterial type: TextTextPublisher: Milton : CRC Press LLC, 2020Description: 1 online resource (365 p.)ISBN: 9781000750973; 1000750973; 9780429277900; 0429277903; 9781000751215; 100075121X; 9781000751093; 1000751090Subject(s): Supercapacitors -- Design | Nanostructured materials | SCIENCE / Chemistry / General | SCIENCE / Chemistry / Industrial & Technical | TECHNOLOGY / Material ScienceDDC classification: 620.1 LOC classification: TK7872.C65Online resources: Taylor & Francis | OCLC metadata license agreement
Contents:
Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Contributors -- Chapter 1: Niobium Based Materials for Supercapacitors -- Chapter 2: Zinc-Based Materials for Supercapacitors -- Chapter 3: Defect Engineered Inorganic Materials for Supercapacitors -- Chapter 4: Vanadium-Based Compounds for Supercapacitors -- Chapter 5: Future Prospects and Challenges of Inorganic-Based Supercapacitors -- Chapter 6: Tungsten Based Materials for Supercapacitors -- Chapter 7: Microwave-Assisted Inorganic Materials for Supercapacitors
Chapter 8: Tin-Based Materials for Supercapacitor -- Chapter 9: Inorganic Materials-Based Next-Generation Supercapacitors -- Chapter 10: Synthesis Approaches of Inorganic Materials -- Chapter 11: Metal-Organic Frameworks Derived Materials for Supercapacitors -- Chapter 12: Surface Morphology Induced Inorganic Materials for Supercapacitors -- Chapter 13: Molybdenum Based Materials for Supercapacitors Beyond TMDs -- Chapter 14: Iron-Based Electrode Materials for an Efficient Supercapacitor -- Chapter 15: Metal-Organic Frameworks for Supercapacitors
Chapter 16: Amino Acid-Assisted Inorganic Materials for Supercapacitors -- Chapter 17: Co-Based Materials for Supercapacitors -- Index
Summary: Among electrode materials, inorganic materials have received vast consideration owing to their redox chemistry, chemical stability, high electrochemical performance, and high-power applications. These exceptional properties enable inorganic-based materials to find application in high-performance energy conversion and storage. The current advances in nanotechnology have uncovered novel inorganic materials by various strategies and their different morphological features may serve as a rule for future supercapacitor electrode design for efficient supercapacitor performance. Inorganic Nanomaterials for Supercapacitor Design depicts the latest advances in inorganic nanomaterials for supercapacitor energy storage devices. Key Features: Provides an overview on the supercapacitor application of inorganic-based materials. Describes the fundamental aspects, key factors, advantages, and challenges of inorganic supercapacitors. Presents up-to-date coverage of the large, rapidly growing, and complex literature on inorganic supercapacitors. Surveys current applications in supercapacitor energy storage. Explores the new aspects of inorganic materials and next-generation supercapacitor systems.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Description based upon print version of record.

Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Contributors -- Chapter 1: Niobium Based Materials for Supercapacitors -- Chapter 2: Zinc-Based Materials for Supercapacitors -- Chapter 3: Defect Engineered Inorganic Materials for Supercapacitors -- Chapter 4: Vanadium-Based Compounds for Supercapacitors -- Chapter 5: Future Prospects and Challenges of Inorganic-Based Supercapacitors -- Chapter 6: Tungsten Based Materials for Supercapacitors -- Chapter 7: Microwave-Assisted Inorganic Materials for Supercapacitors

Chapter 8: Tin-Based Materials for Supercapacitor -- Chapter 9: Inorganic Materials-Based Next-Generation Supercapacitors -- Chapter 10: Synthesis Approaches of Inorganic Materials -- Chapter 11: Metal-Organic Frameworks Derived Materials for Supercapacitors -- Chapter 12: Surface Morphology Induced Inorganic Materials for Supercapacitors -- Chapter 13: Molybdenum Based Materials for Supercapacitors Beyond TMDs -- Chapter 14: Iron-Based Electrode Materials for an Efficient Supercapacitor -- Chapter 15: Metal-Organic Frameworks for Supercapacitors

Chapter 16: Amino Acid-Assisted Inorganic Materials for Supercapacitors -- Chapter 17: Co-Based Materials for Supercapacitors -- Index

Among electrode materials, inorganic materials have received vast consideration owing to their redox chemistry, chemical stability, high electrochemical performance, and high-power applications. These exceptional properties enable inorganic-based materials to find application in high-performance energy conversion and storage. The current advances in nanotechnology have uncovered novel inorganic materials by various strategies and their different morphological features may serve as a rule for future supercapacitor electrode design for efficient supercapacitor performance. Inorganic Nanomaterials for Supercapacitor Design depicts the latest advances in inorganic nanomaterials for supercapacitor energy storage devices. Key Features: Provides an overview on the supercapacitor application of inorganic-based materials. Describes the fundamental aspects, key factors, advantages, and challenges of inorganic supercapacitors. Presents up-to-date coverage of the large, rapidly growing, and complex literature on inorganic supercapacitors. Surveys current applications in supercapacitor energy storage. Explores the new aspects of inorganic materials and next-generation supercapacitor systems.

OCLC-licensed vendor bibliographic record.

Technical University of Mombasa
Tom Mboya Street, Tudor 90420-80100 , Mombasa Kenya
Tel: (254)41-2492222/3 Fax: 2490571