SHARP FOCUSING OF LASER LIGHT [electronic resource].

By: Kotlyar, VictorContributor(s): Stafeev, Sergey S | Nalimov, AntonMaterial type: TextTextPublisher: Boca Raton : CRC Press, 2019Description: 1 online resourceISBN: 9781000711257; 1000711250; 9780429346071; 0429346077; 9781000711448; 1000711447; 9781000711639; 1000711633Subject(s): TECHNOLOGY / Electricity | TECHNOLOGY / Lasers | Laser beams | Quantum opticsDDC classification: 621.366 LOC classification: QC689.5.L37Online resources: Taylor & Francis | OCLC metadata license agreement Summary: Readers will learn in which ways light can be "confined" within a subwavelength region smaller than half a wavelength. Strictly within the focal spot, all degrees of freedom of light interact and manifest themselves in a dramatic way. The size and shape of the focal spot and the magnitude of side-lobes depend on the polarization state alongside phase and amplitude distributions of a light beam. Readers will learn techniques in which inhomogeneously (i.e., azimuthally and radially) polarized optical beams can be focused. In sharp focus, exotic phenomena can occur, including the negative propagation of light and a toroidal optical flow. Throughout the book, the numerical simulation is performed using the rigorous solution of Maxwell's equations based on a Finite-Difference Time-Domain (FDTD) approach, which makes the results of modeling highly reliable. The photonic components, including optical metasurfaces, discussed in the book have been implemented using state-of-the-art techniques of electron beam writing and reactive ion-beam etching of microrelief. Two chapters are concerned with photonics hot spots, which deal with the control of light by means of optical metasurfaces and the generation of an energy backflow in the region of sharp focus of a laser beam. Another hot topic is diffractive polarization converters implemented as subwavelength diffraction gratings to convert polarization of light. By way of illustration, such converters are shown to perform linear-to-radial or linear-to-azimuthal polarization conversion. The book describes advanced photonic components fabricated by the authors to perform sharp focusing of light, including binary zone plates, binary axicons, a planar photonic crystal lens, diffraction polarization converters, and metalenses. This book is a must-have for individuals and institutions studying cutting edge optics.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Readers will learn in which ways light can be "confined" within a subwavelength region smaller than half a wavelength. Strictly within the focal spot, all degrees of freedom of light interact and manifest themselves in a dramatic way. The size and shape of the focal spot and the magnitude of side-lobes depend on the polarization state alongside phase and amplitude distributions of a light beam. Readers will learn techniques in which inhomogeneously (i.e., azimuthally and radially) polarized optical beams can be focused. In sharp focus, exotic phenomena can occur, including the negative propagation of light and a toroidal optical flow. Throughout the book, the numerical simulation is performed using the rigorous solution of Maxwell's equations based on a Finite-Difference Time-Domain (FDTD) approach, which makes the results of modeling highly reliable. The photonic components, including optical metasurfaces, discussed in the book have been implemented using state-of-the-art techniques of electron beam writing and reactive ion-beam etching of microrelief. Two chapters are concerned with photonics hot spots, which deal with the control of light by means of optical metasurfaces and the generation of an energy backflow in the region of sharp focus of a laser beam. Another hot topic is diffractive polarization converters implemented as subwavelength diffraction gratings to convert polarization of light. By way of illustration, such converters are shown to perform linear-to-radial or linear-to-azimuthal polarization conversion. The book describes advanced photonic components fabricated by the authors to perform sharp focusing of light, including binary zone plates, binary axicons, a planar photonic crystal lens, diffraction polarization converters, and metalenses. This book is a must-have for individuals and institutions studying cutting edge optics.

OCLC-licensed vendor bibliographic record.

Technical University of Mombasa
Tom Mboya Street, Tudor 90420-80100 , Mombasa Kenya
Tel: (254)41-2492222/3 Fax: 2490571