HYPERSPECTRAL SATELLITES AND SYSTEM DESIGN.

By: Qian, Shen-EnMaterial type: TextTextPublisher: [Place of publication not identified] : CRC PRESS, 2020Description: 1 online resource (1 volume) : illustrations (black and white)Content type: text Media type: computer Carrier type: online resourceISBN: 9780429266201; 0429266200; 9780429556708; 0429556705; 9780429561177; 0429561172Subject(s): Artificial satellites | Artificial satellites -- Design and construction | Hyperspectral imaging | TECHNOLOGY / Engineering / Civil | TECHNOLOGY / Engineering / Mechanical | TECHNOLOGY / LasersDDC classification: 629.46 LOC classification: TL796Online resources: Taylor & Francis | OCLC metadata license agreement
Contents:
Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Author Biography -- Chapter 1: Introduction to Hyperspectral Satellites -- 1.1. Spaceborne Spectroscopy and Imaging -- 1.2. Hyperspectral Imaging Approaches -- 1.2.1. Dispersive Elements Based Approach -- 1.2.1.1. Whiskbroom Mode -- 1.2.1.2. Pushbroom Mode -- 1.2.2. Spectral Filters Based Approach -- 1.2.2.1. Linear Variable Filters -- 1.2.2.2. On-Chip Stepped Fabry-Pérot Filters -- 1.2.2.3. Electronically Tunable Filters -- 1.2.3. Snapshot Hyperspectral Imagers -- 1.2.3.1. Multi-Aperture Filtered Camera
1.2.3.2. Coded Aperture Snapshot Spectral Imager -- 1.2.3.3. Image Mapping Spectrometry -- 1.2.3.4. Snapshot Hyperspectral Imaging Fourier Transform Spectrometer -- 1.2.3.5. On-Chip Fabry-Pérot Filters -- 1.3. Hyperspectral Imaging from Aircraft to Spacecraft -- 1.3.1. Scientific Rationale for Hyperspectral Remote Sensing -- 1.3.2. History of Development of Airborne Hyperspectral Imagers -- 1.3.2.1. First Airborne Hyperspectral Imager-AIS -- 1.3.2.2. Airborne Imaging Spectrometer Development Between the 80's and 90's -- 1.3.2.3. Early Imaging Spectrometer Development in Canada
1.3.3. Planned NASA Orbiting Imaging Spectrometers in the 1990s -- 1.3.4. Two Major Airborne Hyperspectral Sensor Developments Since the Beginning -- 1.3.4.1. Difference Between Airborne and Spaceborne Hyperspectral Imaging -- 1.3.4.2. AVIRIS and Its Next Generation -- 1.3.4.3. CASI and Its Spectrally and Spatially Extended Siblings -- References -- Chapter 2: Overview of Hyperspectral Sensors on Orbits -- 2.1. Spaceborne Hyperspectral Sensors at a Glance -- 2.2. Ultraviolet and Visible Imagers and Spectrographic Imagers -- 2.3. Hyperspectral Imager (HSI) for the LEWIS Mission
2.4. Moderate Resolution Imaging Spectroradiometer on Terra and Aqua Satellites -- 2.5. Hyperion Onboard EO-1 Mission -- 2.6. Compact High-Resolution Imaging Spectrometer (CHRIS) on PROBA Satellite -- 2.7. Medium-Resolution Imaging Spectrometer Onboard ESA's ENVISAT -- 2.8. Visible and Infrared Thermal Imaging Spectrometer for Rosetta, Venus-Express, and NASA Dawn Planetary Missions -- 2.9. Compact Reconnaissance Imaging Spectrometer for Mars -- 2.10. Moon Mineralogy Mapper -- 2.11. Fourier Transform Hyperspectral Imager Onboard Chinese Environment Protection Satellite HJ-1A
2.12. Hyperspectral Imager Onboard Indian Mini Satellite-1 -- 2.13. Advanced Responsive Tactically Effective Military Imaging Spectrometer Onboard TacSat-3 -- 2.14. Hyperspectral Imager for the Coastal Ocean Onboard the International Space Station -- 2.15. Visible and Near-Infrared Imaging Spectrometer Aboard Chang'E 3 Spacecraft -- 2.16. Ocean and Land Color Imager (OLCI) on Sentinel-3A -- 2.17. Miniature High-Resolution Imaging Spectrometer on GHGSat-D -- 2.18. Aalto-1 Spectral Imager on a 3U Nanosatellite -- 2.19. DLR Earth Sensing Imaging Spectrometer on the International Space Station
Summary: Hyperspectral Satellites and System Design is the first book on this subject. It provides a systematic analysis and detailed design of the entire development process of hyperspectral satellites. Derived from the author's 25-year firsthand experience as a technical lead of space missions at the Canadian Space Agency, the book offers engineers, scientists, and decision-makers detailed knowledge and guidelines on hyperspectral satellite system design, trade-offs, performance modeling and simulation, optimization from component to system level, subsystem design, and implementation strategies. This information will help reduce the risk, shorten the development period, and lower the cost of hyperspectral satellite missions. This bookis a must-have reference for professionals in developing hyperspectral satellites and data applications. It is also an excellent introductory book for early practitioners and students who want to learn more about hyperspectral satellites and their applications.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
No physical items for this record

Hyperspectral Satellites and System Design is the first book on this subject. It provides a systematic analysis and detailed design of the entire development process of hyperspectral satellites. Derived from the author's 25-year firsthand experience as a technical lead of space missions at the Canadian Space Agency, the book offers engineers, scientists, and decision-makers detailed knowledge and guidelines on hyperspectral satellite system design, trade-offs, performance modeling and simulation, optimization from component to system level, subsystem design, and implementation strategies. This information will help reduce the risk, shorten the development period, and lower the cost of hyperspectral satellite missions. This bookis a must-have reference for professionals in developing hyperspectral satellites and data applications. It is also an excellent introductory book for early practitioners and students who want to learn more about hyperspectral satellites and their applications.

Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Author Biography -- Chapter 1: Introduction to Hyperspectral Satellites -- 1.1. Spaceborne Spectroscopy and Imaging -- 1.2. Hyperspectral Imaging Approaches -- 1.2.1. Dispersive Elements Based Approach -- 1.2.1.1. Whiskbroom Mode -- 1.2.1.2. Pushbroom Mode -- 1.2.2. Spectral Filters Based Approach -- 1.2.2.1. Linear Variable Filters -- 1.2.2.2. On-Chip Stepped Fabry-Pérot Filters -- 1.2.2.3. Electronically Tunable Filters -- 1.2.3. Snapshot Hyperspectral Imagers -- 1.2.3.1. Multi-Aperture Filtered Camera

1.2.3.2. Coded Aperture Snapshot Spectral Imager -- 1.2.3.3. Image Mapping Spectrometry -- 1.2.3.4. Snapshot Hyperspectral Imaging Fourier Transform Spectrometer -- 1.2.3.5. On-Chip Fabry-Pérot Filters -- 1.3. Hyperspectral Imaging from Aircraft to Spacecraft -- 1.3.1. Scientific Rationale for Hyperspectral Remote Sensing -- 1.3.2. History of Development of Airborne Hyperspectral Imagers -- 1.3.2.1. First Airborne Hyperspectral Imager-AIS -- 1.3.2.2. Airborne Imaging Spectrometer Development Between the 80's and 90's -- 1.3.2.3. Early Imaging Spectrometer Development in Canada

1.3.3. Planned NASA Orbiting Imaging Spectrometers in the 1990s -- 1.3.4. Two Major Airborne Hyperspectral Sensor Developments Since the Beginning -- 1.3.4.1. Difference Between Airborne and Spaceborne Hyperspectral Imaging -- 1.3.4.2. AVIRIS and Its Next Generation -- 1.3.4.3. CASI and Its Spectrally and Spatially Extended Siblings -- References -- Chapter 2: Overview of Hyperspectral Sensors on Orbits -- 2.1. Spaceborne Hyperspectral Sensors at a Glance -- 2.2. Ultraviolet and Visible Imagers and Spectrographic Imagers -- 2.3. Hyperspectral Imager (HSI) for the LEWIS Mission

2.4. Moderate Resolution Imaging Spectroradiometer on Terra and Aqua Satellites -- 2.5. Hyperion Onboard EO-1 Mission -- 2.6. Compact High-Resolution Imaging Spectrometer (CHRIS) on PROBA Satellite -- 2.7. Medium-Resolution Imaging Spectrometer Onboard ESA's ENVISAT -- 2.8. Visible and Infrared Thermal Imaging Spectrometer for Rosetta, Venus-Express, and NASA Dawn Planetary Missions -- 2.9. Compact Reconnaissance Imaging Spectrometer for Mars -- 2.10. Moon Mineralogy Mapper -- 2.11. Fourier Transform Hyperspectral Imager Onboard Chinese Environment Protection Satellite HJ-1A

2.12. Hyperspectral Imager Onboard Indian Mini Satellite-1 -- 2.13. Advanced Responsive Tactically Effective Military Imaging Spectrometer Onboard TacSat-3 -- 2.14. Hyperspectral Imager for the Coastal Ocean Onboard the International Space Station -- 2.15. Visible and Near-Infrared Imaging Spectrometer Aboard Chang'E 3 Spacecraft -- 2.16. Ocean and Land Color Imager (OLCI) on Sentinel-3A -- 2.17. Miniature High-Resolution Imaging Spectrometer on GHGSat-D -- 2.18. Aalto-1 Spectral Imager on a 3U Nanosatellite -- 2.19. DLR Earth Sensing Imaging Spectrometer on the International Space Station

OCLC-licensed vendor bibliographic record.

Technical University of Mombasa
Tom Mboya Street, Tudor 90420-80100 , Mombasa Kenya
Tel: (254)41-2492222/3 Fax: 2490571